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Abstract

Multivariate adaptive regression splines (MARS) and a derived method two-step MARS (TMARS) were used for modelling the gastro-
intestinal absorption of 140 drug-like molecules. The published absorption values for these molecules were used as response variable and
calculated molecular descriptors as potential explanatory variables. Both methods were compared and their potential use in quantitative
structure—activity relationship (QSAR) context evaluated.

The predictive abilities of the models were studied using different sequences of Monte Carlo cross validation (MCCV). It was shown that
both types of models had good predictive abilities and that for the data used, MARS gave better results than TMARS. It could be concluded
that both methods could be valuable for QSAR modelling.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction focuses on the relationships between theoretical descriptors
and the gastro-intestinal absorption of drug molecules.

High throughput screening has become a very important  In the literature different QSAR-models can be found pre-
issue in drug discovery. Since most new molecules, poten-dicting the absorption of molecules, and built using linear
tially useful, fail in a later phase of the drug development modelling techniques like multiple linear regression (MLR)
due to non-proper absorption, distribution, metabolisation, [1], principal components regression (PGR)]), partial least
elimination and toxicity (ADME-Tox) properties, screen- squares (PLS)regressifh3], and some more advanced non-
ing methods for these properties are necessary in the firstinear techniques like artificial neural networks (ANM)
stages of the drug development. In silico screening can beand classification and regression trees (CART) Two well
very useful, since it allows screening for ADME-Tox and known approaches used in screening are the Lipinski rule
other properties before the molecules are even synthesizedof five [6] and the linear free energy relationship (LFER)
In silico methods try to build relationships between a dataset approach of Abraham et 4I7]. A disadvantage of these two
consisting of known values for the property of interest and methods is that they give a quite rough classification of the
some calculated theoretical and/or experimental parameteranolecules, allowing the elimination of only a very limited set
or descriptors. These kind of relationships are called quan- of molecules.
titative structure—activity relationships (QSAR). This paper In this paper, it was tried to build models, that give a

more accurate prediction of the absorption values of drug
* Corresponding author. Tel.: +32 2 477 47 34; fax: +32 24774735, molecules. Therefore two techniques, multivariate adaptive
E-mail address: yvanvdh@vub.ac.be (Y. Vander Heyden). regression splines (MARS) and two-step MARS (TMARS),
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were evaluated. The latter is in fact a combination of MLR
and MARS[8]. The MARS technique was introduced by
Friedman in 19919] and successfully used in QSAR by
Nguyen-Cong et a[10] and Ren et a[11,12]and in quan-
titative structure retention relationships (QSRR) by Put et
al.[13]. TMARS was introduced and applied successfully in
the prediction of retention in gas chromatography by Xu et
al.[8]. It was proven that the combined method TMARS sig-
nificantly improved the prediction abilities compared to the
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gives the best description of the response is selected. After
this selection new spline functions are added stepwise inorder
to eventually get a complex multivariate model — the global
MARS-model — which almost perfectly describes the train-
ing set. The stepwise addition of spline functions is based
on the improvement of the model. In each step the pair of
splines, which gives the best improvement in the description
of the training set, is added. The global MARS model usu-
ally shows overfitting. In a next step the global MARS-model

individual MLR and MARS models. is pruned using a sequence of generalised cross-validations

In a first step, absorption was modeled using MARS. The (GCV) alternated with 10-fold cross-validation. During this
models were evaluated for their predictive abilities using procedure, the contribution of each base function to the
Monte Carlo cross validation (MCC\[14]. Inasecond step,  descriptive abilities of the model is evaluated based on a
a TMARS model was build, evaluated and compared to the lack-of-fit (LOF) criterion. The base functions contributing

MARS-models. the least to the model are eliminated stepwise. This pruning
process results in a sequence of models with different size.
In the third and final step the optimal model is selected using
2. Theory a cross-validation technigy®,15].

2.1. Multivariate adaptive regression splines (MARS) 2.1.1. Building the global MARS-model
In the first step, the MARS-algorithm divides the data
MARS is a local modelling technique that divides the space into two subregions. This is done searching iteratively
data space into several, possibly overlapping, regions andeach of the descriptive variables as split variable and for each
fits truncated spline functions in each of these regions. Trun- variable each available data point as knot location. These
cated spline functions consist of two segments, i.e. left-sided selections are done using the GCV-statistic:

Eq. (1) and right-sided E(2) truncated functions, separated

from each other by a so-called knot locati®i. GeV(M) = <1> S o1 (i — 3i)? @)
. (1 C(M)/n)?
B q (t—x), if x<t
byx—1)=[-(x—-0]} = 0 otherwise 1) wheren is the number of data objects; the response value
’ for objectl; y;, the predicted response value for obje@nd
b+( l) _ [+( t)]q _ (X — t)q, if x>t (2) C(M), a penalty factor defined as
g =IO otherwise C(M) = M +dM 5)

where b, (x — ) and b*(x — 1) are the spline functions where M is the number of non-constant base functions in
descrlblng respectlvely, the regions right and left of the knot the model ad d a cost penalty factor for each base function
locations andg the power to which the spline is raised. The optimisation. The GCV-statistic is first used to select the best
subscript “+” indicates that the result of the function is 0 knot location for each of the descriptive variables. Then the
when the argument is not satisfied. A spline function is also Same statistic is used to select the most significant variable
called a base function. For each of the explanatory variables(@nd his previously selected knot location) for description
MARS selects the pair of splines and the knot location, that of the training set. After selection of the variable the data
bestdescribe the response variable. In anext step, the differenéPace is divided into two subregions, defined by two splines
base functions are combined in one multidimensional model, (one at the left of the knot-location and one at the right). The
which describes the response as a function of the explanatoryProcedure is now repeated for each of the subregions and then
variables. The result is a complex non-linear model of the for the subregions of the subregions, and so on. This iterative

form: procedure results in a two-by-two stepwise addition of spline
y base functions and is continued until a model is build with a
A predefined number of terms. This model is called the global
=ao+ Zl"mBm(x) 4 MARS-model[9,15]
m=

A spline base function can be either a single spline func-
tion or an interaction term consisting of the product of two or
more spline functions. The level of interaction terms allowed

wherey is the predicted value for the response variabfg;
the coefficient of the constant base functidfi;the number
of base functions an#,, anda,, themth base function and is determined by the orderin MARS. If g equals 1, only
its coefficient9,15]. single (linear) spline functions are allowed. dfequals 2

A MARS analysis generally consists of three steps. In the or 3, respectively, quadratic and cubic interaction terms can
first step the variable for which the pair of spline functions be added. When interaction terms are allowed the algorithm
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checks, at the end of each iteration, whether the introductionthe variable, which shows the highest correlation with the

of an interaction improves the modél,15]. response. If this variable results in a significant regression
by F-test, the variable is retained and the stepwise procedure
2.1.2. Pruning continues. At each step, the variable that gives the highest

The global MARS-model usually shows overfitting. decrease inthe error sum of squares is added to the model. The
Therefore a stepwise pruning procedure is applied, sequen-model building stops when none of the remaining variables
tially eliminating the least contributing base function(s). causes a significant decrease in the sum of sqUayEg].

Usually the pruning process is based on GCV, but other cross- A test for lack of fit is carried out on the linear model
validation methods, like-fold cross-validation can be used. [8,17]. If the multiple regression coefficieRtis close to one
GCV results in the GCV-statistic. In fact this statistic is the and theF-ratio is not significant, the linear model can be
error sum of squares adjusted with a penalty factor for the considered as final. If not, the model building is continued
complexity of the model. This is done to avoid the selection applying the TMARS algorithm.

of too complex, overfitting models. In this work pruning was In afirst step aforward stepwise procedure is used to deter-
carried out by applying alternately GCV and 10-fold cross- mine whether some variablesin the linear model should be
validation. This alternating pruning process results in a seriesreplaced by a pair of spline functions, resulting in a model

of smaller MARS-model§9,15]. X
2.1.3. Selection of the optimal model y=cot kzz:lckgk(x) ©)

The selection of the optimal model out of the series of
models obtained from the pruning process is also based onwhereco is the constant base functioki; the number of base
cross-validation. Usually leave-one-out cross validation is functions derived from the linear mode};, the coefficient
used for this purpose, but in fact every cross validation tech- of the functiongx(x), with gi(x) either one of the descriptors
nique can be used. The model with the lowest root mean X Of & pair of spline function+(x; — x;)| [8].
square error of cross validation (RMSECV) is the most accu- [N @ next step, pairs of spline functions are added to the
rate model[9,15]. The optimal model can be identified as the model, following the same procedures as described in Section
least complex one within one standard error of the most accu-2.1.1 resulting in a combined model:
rate model. The ideais here to choose the least complex model % M
with a predict.ive error comparaple tothat of the mostaccurate 5, — .o 4+ N o (x) + Z G By (%) @)
one[16]. Inthis paper the selection of the most optimal model 1 1
was carried out using Monte Carlo cross validafib4].

k=

whereM is the number of MARS base functiong;,, the
2.2. Two-step MARS (TMARS) coefficient of thenth MARS base functiom,,(x).
This model, called the global TMARS model, is pruned
TMARS is in fact a combination of MLR and MARS. Ina  @ccording to the procedure described in Sec#idn2 Both
first step a linear model is build, which describes the responsegk(¥) @ndBy,(x)-functions can be deleted in the pruning pro-
variable as a function of the explanatory variables, using a C€SS- The pruning process results in a series of smaller models
stepwise linear regression procedure. If the obtained linearfom which the optimal is selected using cross-validation
model shows lack of fit, MARS is applied based on the linear (S€ction2.1.3 [8,9].
model. During this procedure some of the descriptors used
in the linear model are replaced by a pair of spline functions. 2.3. Theoretical molecular descriptors
In the next step the two-by-two stepwise addition procedure
for building the global model is applied, resulting in a global A theoretical molecular descriptor is the final result of
TMARS model. After obtaining the global model, pruning @ logical and mathematical procedure, which converts the
and selection of the optimal model is carried out as describedchemical information from a symbolic representation of the
in Section2.1.2 and 2.1.3espectively8]. molecule in a useful numerical val{8]. Several thousands
The TMARS procedure starts with building alinear model, ©f descriptors are already proposed in the literature and the

which describes the response variable as a function of thenumber is still grOWing. Theoretical descriptors can be classi-
explanatory variables. A model is obtained fied in differentways. The most applied classification is based

on the molecular representation from which the descriptor is
. derived. This results in five classes, zero-, one-, two-, three-,
y=ao+ Z"m 6) and four-dimensional descriptors derived, respectively, from
a molecular formula, a substructure list, a topological, a geo-
in which ag is the interceptL, the number of selected vari- metrical and a stereoelectronic or lattice representation. More
ables andy, the regression coefficient of variabte The information about molecular descriptors and their classifica-
forward stepwise algorithm is used to select the best descrip-tion can be found in the work of Todeschini and Consonni
tors to be included in the model. This procedure starts with [18].
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3. Materials and methods Table 1
The absorption data for the 140 molecules, extracted from Zhao[&t%l.
3.1. Data No. Substance %HIA
1 Acarbose 15
The data consists of intestinal absorption values for a sub- 2 Acebutolol 89.75
set of 140 molecules extracted from a dataset collected by 3 Acetaminophen - 85
Zhao et al[1]. For each of the molecules the name and the ﬁgﬁfl):zz::‘;y"c acid lgg
percentage intestinal absorption (%HIA) are listedable 1 6 Acyclovir 5
These molecules were selected because they show a high7 Adefovir 12
diversity in molecular structure and cover the whole absorp- 8 Alprenolol 93.75
tion range (0-100%p]. 9 Aminopyrine 100
10 Amoxicillin 93.75
. . L. 11 Amphotericin B 5
3.2. Three-dimensional structure optimisation 12 Amrinone 93
13 Antipyrine 100
The three-dimensional structures of the molecules were 14 Atenolol 51
drawn and optimized using the HypercH®rf.03 profes- 15 Atropine 90
sional software (Hypercube, Gainesville, FL, USA). After 22:2:;’:;3;:'” 361
the input of the molecule as a topological structure, geometry 5 Benazepril 37
optimisation was obtained by the Molecular Mechanics Force 19 Benzylpenicillin 27.5
Field method (MM+) using the Polak-R#mie conjugate gra- 20 Betaxolol 90
dient algorithm with a RMS gradient of 0.1 kca¥/fnol) as 21 Bornaprine 100
stop criterion. The optimisation of the structure results in a g;gzgﬂ;‘;zlate 2;’1
data matrix consisting of the Cartesian coordinates of the ,, Bromocriptine 08
atoms, defining the structure. This data matrix can then be2s Bumetanide 100
used to calculate molecular descriptfsk 26 Bupropion 87
27 Caffeine 100
3.3. Calculating molecular descriptors gg ggglg:ﬁ?am 629
30 Cefatrezine 76
Molecular descriptors were calculated using the Dr&gon 31 Ceftriaxone 1
4.0 professional softwafd9]. This program allows to cal- 32 Cefuroxime 5
culate 48 constitutional descriptors, 119 topological descrip- 33 Cefuroximeaxetil 36
tors, 47 walk and path counts, 33 connectivity indices, 47 gﬁ%ﬁgﬁx';emcol 99%5
information indices, 96 2D autocorrelations, 107 edge adja- 3¢ Chlorothgzide 23.75
cency indices, 64 BCUT-descriptors, 21 topological charge 37 Cimetidine 82,5
indices, 44 eigenvalue-based indices, 41 randic molecu-38 Ciprofloxacin 84.5
lar profiles, 74 geometrical descriptors, 150 RDF descrip- 39 Cisapride 100
tors, 160 3D-MoRSE descriptors, 99 WHIM descriptors, gg’é‘;?r']”e 22.25
197 GETAWAY descriptors, 121 functional group counts, 4, Corticosterone 100
120 atom-centered fragments, 14 charge descriptors and3 Cromolynsodium 0.5
28 molecular properties. More information about the above 44 Cymarin 47
descriptors can be found in the work of Todeschini and Con- 4° Cyproterone acetate 100
sonni[18]. The software automatically eliminates constant B;Zim::asone 92825
variables in a given dataset. For descriptors with a correla- 44 Doxorzbicin 5
tion higher than 0.98, parameters are set such that only onesg Enalapril 66
is retained in the dataset. Next to the Dra§atescriptors 50 Enalaprilat 17.5
Hypercherf? was used to calculate some additional param- 51 Erythromycin 35
eters, i.e. solvent accessible surface area, molecular volume; Ethambutol | 75
L. .. . 3 Ethinylestradiol 100
octanol/water partition coefficient (Id®), hydration energy, 5, Etoposide 50
molar refractivity, molar polarisability and molar mg$&3. 55 Felbamate 925
56 Fenoterol 60
3.4. Building MARS and TMARS models 57 Fluconazole 96.25
58 Foscarnet 17
The models were build using in-house algorithms written 22 Egi}ﬁﬁfg;’nwm 33%
in Matlab 6.5 (The Mathworks, Matick, MA). Programming 61 Furosemide 61
was done according to the original MARS algorithm pro- 62 Gabapentin 50
Ganciclovir 3.6

posed by Friedmaft]. The absorption values were used as 63
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Table 1 Continued)

No. Substance %HIA No. Substance %HIA
64 Guanabenz 75 128 Terazosin 93.25
65 Guanoxan 50 129 Terbutaline 66.5
66 Hydrochlorothiazide 72.75 130 Testosterone 100
67 Hydrocortisone 90.25 131 Theophylline 96
68 Imipramine 96.25 132 Timolol maleate 85.5
69 Indomethacin 100 133 Tranexamicacid 55
70 lothalamatesodium 1.9 134 Trimethoprim 97
71 Isoxicam 100 135 Trovoflaxicin 88
72 Isradipine 92.5 136 Venlafaxine 92
73 Labetalol 93.75 137 Verapamil 95
74 Lactulose 0.6 138 Warfarin 98.5
75 Lamotrigine 70 139 Ximoprofen 100
76 Levodopa 85 140 Zidovudine 100
77 Lincomycin 27.5
78 Lisinopril 25
79 Loracarbef 100 response variables and the descriptors as explanatory vari-
80 Lormetazepam 100
- ables.

81 Lovastatin 30.5
82 Mannitol 20
83 Meloxicam 90
84 Metaproterenol 44 4. Results and discussion
85 Methotrexate 80
86 Methyldopa 41 g
87 Methylprednisolone 82 4.1. Building MARS-models
88 Metolazone 63 ) ) . . .
89 Metoprolol 95 The model was build using the Briggsian logarithms of
90 Morphine 100 the percentages human intestinal absorption (%HIA) of all
g; ma?OIOId féo 140 molecules as response variable. The descriptors were
o3 Nolorona o1 used as descriptive variables. The global MARS-model is
94 Nordiazepam 99 build gnd pruned. The ordqrpf the MARS-model is set on
95 Norfloxacin 35 2, which means that both linear and second order splines
96 Olsalazine 2.3 can be used during model building. The maximum num-
g; guaba"?d 10%)-4 ber of termsMnmay, the stop criterion in building the global
% Oiztg;;g 985 MARS-model, was set to 100. Pruning was carried out using
100 Oxprenolol 91.75 alternately 10-fold and general cross validatio_n. A sequence
101 Phenoxymethylpenicillin 45 of smaller MARS models was obtained. Selection of the opti-
102 Phenytoin 90 mal model was performed using Monte Carlo cross validation
igi Pindolol 1%%)-75 [14]. In MCCV, a given fraction of the dataset is used as
105 ol os75  testset The process starts with a random selection of the
106 Pravastatin 34 test set, the rem_aining objects are used as training set. The
107 Prazosin 100 obtained model is used to predict the test set and the error
108 Prednisolone 98.9 is calculated. In our work this process is repeated one hun-
ﬂg ETOgeSterloTe 9923-525 dred times, each time with a new randomly selected test set.
11 P:ggs:r?nz ) The mean error is calculated. Eleven sequences of MCCV
112 Propylthiouracil 75 were carried out. The first sequence used only one ob_jec'g as
113 Quinidine 80.25 test set and corresponds to a leave one out cross-validation.
114 Raffinose 0.3 The other sequences used, respectively, 5, 10, 15, 20, 25,
ﬂg Ea”'“d'”el 56%-75 30, 35, 40, 45 and 50% of the dataset as test set. For each
117 S:Eéﬁt;:z o8 size of test sets 100 repetitions are carried Big. 1 shows
118 Salicylic acid 100 the root mean square error of cross vali(_jation as a function
119 Scopolamine 925 of the complexity of the models. Each line stands for one
120 Sorivudine 82 sequence. The model showing a minimal RMSECYV for all
g; gOFa'O' | 9%25 11 sequences is selected as the optiffial. 2shows that the

pironolactone model with 31 base functions shows the minimal RMSECV.
123 Sudoxicam 100 .
124 Sulfasalazine 38.75 Base_d on the one standard error rul_e the modeI_W|th 29 base
125 Sulindac 90 functions was selected as the optimal. The different base
126 Sulpiride 36 functions and their coefficients are given Table 2 The
127 Sumatriptin 70 model consist of one constant functiBn and 28 single lin-
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351 consider function B:

2.1490— H4p, if H4p > 2.1490
0, otherwise

N (2.1490— H4p), = {

n
[$2]
T

(10)

what means that the fourth term in E@3) equals
—0.3825(2.14906- H4p), when H4p is higher than 2.1490
and zero when it is smaller than 2.1490.

The summation of the 29 base functions gives a response
surface in multidimensional space consisting of small planes
describing local regions of the dataspace.

n
(=]

RMSEMCCY
@

-
(=]

4.2. The selected descriptors

0 20 — 40 60 80 100 120
Model size Like previously mentioned 20 descriptors were selected

in the model.Table 3shows the different selected descrip-

tors, their definition and their class. More information can

be found in the work of Todeschini and Consorjh8].

ear spline functions. No second order splines were selectedSince these descriptors are calculated theoretical values, it is

(Fig. 2. not evident to relate them physicochemically to the process

Out of the 761 descriptors used to build the MARS- of drug absorption. One exception is the selectionof

model, 20 different descriptors were selected. Fourteen of o oyanolivater partition coefficient (Idg)-based descriptors

E)hfesps)l? rl]eecftg gc?igiiégnggg; %22\23 ;;%S;%enrg g;?};g\r/]?jn Ioalr(%LTFQG and ALOGP?2). lo@ i_s one of the key properties of

Bio, B11 and B12, Bog and B1 and Bos and Bos. Take the amolecule, often used to estimate whether that molecule can

example of paiB, andB3: pass abiological membrane or (©120,21] Two descriptors,
T(O---0) andrHDon are related to respectively the oxygen

Fig. 1. RMSECYV as a function of the MARS model size. Different lines
represent different testset sizes.

188— . if . 1
(188 7(0-0)), { 88— T(0--0), i T(O. 0) > 188 (®)
0, otherwise Table 2
The different base function8,) of the model and their coefficients,()
T(O--0)—188 if T(O--0) < 188 —
(T(O--0)—188), = { ) 9) B, Definition am
0, otherwise
B1 1 1.9917
This means that whef(O - - - O) is higher than 188, the B2 (1887(0--O))« 0.0021
. B3 (T(O - -O)— 188). 0.0024
second termTable 2 in Eq. (3) equals 0.0021(188 7(O - By (2.1490- Hap), 03895
-0)) and the third term is zero. Whéi(O - -O)issmallerthan 5, (—1.29— BLTF96), 0.0722

188, the second term is zero and the third equals 0.0024( B (BLTF96 +1.29) —0.1450
-0) — 188). The remaining terms are not paired. As example, B7 (—0.6980— Mor14v). —2.6274
Bsg (Mor14v +0.6980) —0.2297
Bg (8 — nHDoN): —0.0470
il B1o (nHDon— 8). —0.4967
T Bi1 (35.602— RDFQ75n). 0.0292
g DU P B12 (RDFOQ75n — 35.602) 0.0653
0.4} Bi3 (—0.3450— Mor18m). 1.2407
B14 (GATS4n — 0.9600) 0.8989
> 085 Bis (0.0650-HATS4p) —1184274
G Bis (MAXDN —5.6270) —33.0517
= B17 (Rle—2.2010) —3.1528
e, Big (0.1530— Morl17m)+ —0.4062
L e Big (Mor19v +0.2210) 0.3513
- B Bao (0.1690— Mor22m). 0.3389
1 i T et Bo1 (Mor22m — 0.1690) ~1.0480
o Bao (R3u— 1.6460) —0.4457
0.2+ i ——— — Bos (ALOGP2-0.2880) —0.0123
[ S ————— Bog (0.7290- GATS1e) —0.6363
. . . ‘ . ‘ ‘ . ‘ Bos (GATS1e— 0.7290) —0.7825
285 29 29.5 30 30.5_ 31 31.5 32 32.5 Boe (1.425(% AAC)+ 1.6485
Model size
Ba7 (0.2660— Elm). 3.7735
i o i i i Bog (1—nCt), —0.1747
Fig. 2. Magnified section frorig. 1, RMSECYV as a function of the MARS Boe (0.0930— Mor18m), _0.9773

model size. Different lines represent different testset sizes.
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Selected descriptors in the MARS-mo&8]

1027

Descriptor Definition Descriptor class

7(O--0) Sum of topological distances between oxygen atoms Topological descriptors
H4p H autocorrelation of lag 4/weighted by atomic polarizabilities GETAWAY descriptors
BLTF96 Verhaar model of Fish base-line toxicity from MLOGP (mmol/l) Molecular properties
Morl14v 3D-MoRSE-signal 14/weighted by atomic van der Waals volumes 3D-MoRSE descriptors
nHDon Number of donor atoms for H-bonds (with N and O) Functional group counts
RDF075n Radial distribution function-7.5/weighted by atomic masses RDF descriptors
Mor18mn 3D-MoRSE signal 18/weighted by atomic masses 3D-MoRSE descriptors
GATS4n Geary autocorrelation-lag 4/weighted by atomic masses 2D autocorrelations
HATS4p Leverage-weighted autocorrelation of lag 4/weighted by atomic polarizabilities GETAWAY descriptors
MAXDN Maximal electrotopological negative variation Topological descriptors
Rle R-autocorrelation of lagl/weighted by atomic Sanderson electronegativities GETAWAY descriptors
Morl7m 3D-MoRSE signal 17/weighted by atomic masses 3D-MoRSE descriptors
Mor19v 3D-MoRSE-signal 19/weighted by atomic van der Waals volumes 3D-MoRSE descriptors
Mor22m 3D-MoRSE signal 228/weighted by atomic masses 3D-MoRSE descriptors
R3u R autocorrelation of lag 3/unweighted GETAWAY descriptors
ALOGP2 Squared Ghose-Crippen octanol-water partition coefficienPgpg Molecular properties
GATSle Geary autocorrelation-lag 1/weighted by atomic Sanderson electronegativities 2D autocorrelations
AAC Mean information index on atomic composition Information indices

Elm 1st component accessibility directional WHIM index/weighted by atomic masses WHIM descriptors

nCt Number of total tertiary C(sp3) Functional group counts

atoms and the donor atoms for H-bonding in the molecule. 4.4. Building the TMARS-model
These descriptors describe properties related to the calcula-

tion of the polar surface area (PSA). The PSA is a measure The model was build using the Briggsian logarithms of
for the H-bonding capacity of a molecule and it has been the %HIA-values for the 140 molecules as response variable.
found that processes involving passive diffusion depend pri- The descriptors were used as descriptive variables. First the

marily on these H-bonding propertig2]. The other selected
descriptors can be related to the two-dimensional (GAT,S4
MAXDN, GATSle, AAC andnCt) or three-dimensional
(H4p, Morl4v, RDFO7m, Mor18n, HATS4p, R1e, Morlia,
Mor19v, Mor22n, R3u and Eik) structure of the molecule

linear model was build and evaluated with a lack-of-fit test
as described in Secticd2 Since this test was significant
MARS was applied. The global TMARS-model was build
and pruned. The orderof the TMARS-model was set on 2
and the maximum number of termfyax 100. Pruning was

[18].

4.3. Predictive power

carried out using alternately 10-fold and general cross valida-
tion. A sequence of smaller TMARS models was obtained.
The selection of the optimal model was carried out using
Monte Carlo cross validation like before.

To evaluate the predictive properties of the model obtained
in Section4.1 each molecule was predicted twice. Once as
part of the training set and once as part of the different test
sets used in the different sequences of the Monte Carlo cross
validation. The model describes the training set quite well
since the root mean squared error for the training setis 0.1183
or 7.0% and theR value is 0.9330. The mean value for the
Root Mean Squared Error of Cross Validation (RMSECV) ©
obtained for the different sequences of the Monte Carlo crossé 0.00 |
validation is 0.2594. This value can be seen as a mean error
of 15.4% of the real absorption value (%HI&)ig. 3shows
the residual plot for the selected MARS-model. In the major
part of the absorption range an acceptable distribution of the
residuals is obtained. In the highest part of the range, where
most objects are situated, a trend is seen. This indicates tha

0.40

0.20

dual

-0.20

-0.40

the model is not ideal. Since the range over which this trend

is shown is small, one can conclude that predictions based on
the MARS-model give a quite accurate indication about the

absorption values of the predicted molecules.

050 000 050 100 150 200  2.50

Predicted Log (%H IA)

Fig. 3. Residual plot for MARS.
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Table 4

Selected descriptors in the MLR-mod28]

Descriptor Definition Descriptor class

nO Number of oxygen atoms Constitutional descriptors
TIE E-state topological parameter Topological descriptors
DIDr05 Distance/detour ring index of order 5 Topological descriptors
7(S--S) Sum of topological distances between sulfur atoms Topological descriptors
IC2 Information content index (neighborhood symmetry of 2-order) Information indices
Mor08n 3D-MoRSE-signal 08/weighted by atomic masses 3D-MoRSE descriptors
Morl6v 3D-MoRSE-signal 16/weighted by atomic van der Waals volumes 3D-MoRSE descriptors
HATS8v Leverage-weighted autocorrelation of lag 8/weighted by atomic van der waals volumes GETAWAY descriptors
nN=N Number of N azo (aliphatic) Functional group counts
nN(CO), Number of imides Functional group counts
nOH Number of total hydroxyl groups Functional group counts
C-030 X-CH-X Atom-centred fragments

The obtained linear model consists of 13 terms, with one cross validation for this model is 27.01, evaluated with leave-
constant function and 12 functions based on different descrip- one-out cross-validation, which confirms that the model is not
tors. The linear model is given by following equation: suited for prediction. Due to these findings the second step,
MARS, was applied. After obtaining the global TMARS-
model, it was pruned using alternately 10-fold and general
cross-validation. Out of the series of models the optimal was
selected using Monte Carlo cross validation (Beg 5). The
graph shows that the minimum for all sequences is found
+ 0.2496(HATS8V)— 0.5254@N = N) at model size 9. The optimal model consists of nine terms

in which seven linear terms and two spline functions (pair
+0.5056@N(CO),) — 0.0814 @OH) of splines) are integrated. The final model can be written as

— 0.3987(C-030) (11)  follows:

$ = 1.2576— 0.1008¢0) — 0.0006(TIE)
— 0.0018(D/Dr05) — 0.0497('(S - -S))
+0.1760(IC2)— 0.1239(Mor08) + 0.2937(Mor16v)

The multiple correlation coefficiem equals 0.701, the stan- ¥ = 1.8814—0.0886¢0) — 0.0499('(S - -S))
dard errorS 0.305 and the-ratio for overaII. regressio_n fit . — 0.1256(Mor081) -+ 0.4351(Morl16v)
F 24.782.Table 4shows the selected descriptors, their defi-

nition and classFig. 4 shows the residual plot for the linear + 0.1207(HATS8v)— 0.3988(C-030)
model. Basec_i on the and theF values it can be concluo!ed —0.0010(337554— TIE),,

that the predicted and observed log(%HIA) are not highly

linearly correlated. The residual plot shows that there is no —0.0133((TIE— 337.554)(214 — R1e)), (12)
random distribution of the residuals, which can imply that

the model shows underfitting. The root mean square error ofThIS model shows aR value of 0.7200 and a RMSECV of

0.2927 evaluated with leave-one-out cross validation. Both

i 0.5¢
0.60 o o
0.30 ° o g
° o, 2 0.45}
° ® o O o
° 8
0.00 ) o o - "
— ° o o =
g ° o g N CP 8 0.4 s
2 030 o ° F e @ o S
- ° o - o | g
o oo = 035}
-0.60 ° T
o
-0.90 0.3}
o
-1.204
T T T T T T T 025 : s : : 5 5 3
050 000 050 1.00 150 200 250 4 6 8 10 12 14 18 18

) Model size
Predicted Log (%HIA)
Fig. 5. RMSECV as a function of the TMARS model size. Different lines

Fig. 4. Residual plot for the MLR model. represent different testset sizes.
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Table 5

Selected descriptors in the TMARS-modtes]

Descriptor Definition Descriptor class

nO Number of oxygen atoms Constitutional descriptors
7(S--S) Sum of topological distances between sulfur atoms Topological descriptors
Mor08mn 3D-MoRSE-signal 08/weighted by atomic masses 3D-MoRSE descriptors
Morl6v 3D-MoRSE-signal 16/weighted by atomic van der Waals volumes 3D-MoRSE descriptors
HATS8v Leverage-weighted autocorrelation of lag 8/weighted by atomic van der waals volumes GETAWAY descriptors
C-030 X-CH-X Atom-centred fragments

TIE E-state topological parameter Topological descriptors
Rle R-autocorrelation of lagl/weighted by atomic Sanderson electronegativities GETAWAY descriptors

values show that TMARS resulted in an improvement of the |

linear model.
°
4.5. The selected descriptors 1007 °
Eight descriptors were selected in the final TMARS- + 0.50 o ° o
model.Table 5shows the different selected descriptors, their ° &
definition and their class. More information about these Eooo_ ° o o o

descriptors can be found in the work of Todeschini and Con- ' °
sonni[18]. All descriptors used are theoretical and can not
easily be related to the process of membrane passage. In the -0.504

selection two descriptors are found corresponding to oxy- ° @

gen and sulphur atom&@ and7(S- -S)). The properties 100l o

described by these descriptors can again be related to the i : : : : : i

polar surface area (PSA22]. Most of the other descrip- 05 000 050 100 150 200 2.50

tors can be related to the two-dimensional (TIE) or three- Predicted Log (%HIA)

dimensional (Mor0&:, Morl16v, HATS8v and R1e) structure

of the molecule. The descriptor C-030 is based on a code Fig. 6. Residual plot for TMARS.

describing each carbon atom through its atom type, bonding

types and neighbouring atom types in the mole¢L83. 5. Conclusions

4.6. Predictive power of the TMARS-model Comparison of the MARS and the TMARS model shows

that the MARS-model describes the dataset better and has

The predictive abilities of the model were evaluated simi- a better predictive ability. The lower performance of the
larly as the MARS-model in Sectich3. As for the MARS- TMARS method can be explained by the fact thatthe TMARS
model each molecule was predicted twice. Once as part ofmodel is based on a linear model. The obtained TMARS
the training set and once as part of the different test sets ofmodel shows high similarity with the linear model. Seven
the MCCV. The description of the training set by the modelis of the selected descriptors@, 7(S - -S), Mor08,, Mor16v,
acceptable with aR value of 0.7200 and a root mean squared HATS8v, C-030 and TIE) correspond to descriptors from the
error for the training set of 0.2772 or 16.44%. The mean linear model. Only one descriptor (R1e) corresponds to a
value for the RMSECV evaluated with Monte Carlo cross descriptor selected in the MARS model. This leads to the
validation is 0.3377 and can be considered as a mean error otonclusion that for our data the linear component in TMARS
20.03% of the real absorption value. The errors obtained with is too strongly represented, resulting in worse models and pre-
the TMARS-model are larger than those obtained with the dictions than those based on the complete non-linear MARS
MARS-model.Fig. 6 shows the residual plot for the selected technique.
TMARS-model. Comparison dfigs. 6 and 3hows that with From the results in this paper it can be concluded that
TMARS a less good distribution of the residuals is obtained for this dataset, MARS performs better than TMARS and
than for MARS. An analogue trend is found as forthe MARS- that MARS can be a valuable tool in modelling the gastro-
model, butthe range over which thistrendis observed is largerintestinal absorption of molecules.
than for MARS. Further, it can be observed that the residuals It could also be shown that TMARS can dramatically
with TMARS are considerably larger. This led to the conclu- improve an MLR model for gastro-intestinal absorption.
sion that predictions based on the TMARS-model, are less Therefore it can also be supposed that TMARS is valuable in
reliable than those based on the MARS-model. modelling gastro-intestinal absorption, if a dataset is avail-
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able with a higher linear correlation between the %HIA and [7] M.H. Abraham, A. Ibrahim, A.M. Zissimos, Y.H. Zhao, J. Corner,
the descriptors, resulting in a better MLR-model. D.P. Reynolds, Drug Discov. Today 7 (2002) 1056-1063.

As final conclusion it can be stated that both techniques [©! ?2?6 3?;“1'5%Lif';’;assa”' Y.Z. Liang, K.T. Fang, J. Chromatogr. A 998

can be valuable and deserve more attention in the field of [9] J.H. Friedman, Ann. Stat. 19 (1991) 1-141.

QSAR. [10] V. Nguyen-Cong, G. Van Dang, B.M. Rode, Eur. J. Med. Chem. 31
(1996) 797-803.

[11] S. Ren, H. Kim, J. Chem. Inf. Comput. Sci. 43 (2003) 2106—
2110.

[12] S. Ren, J. Chem. Inf. Comput. Sci. 43 (2003) 1679-1687.
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