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Abstract

Multivariate adaptive regression splines (MARS) and a derived method two-step MARS (TMARS) were used for modelling the gastro-
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ntestinal absorption of 140 drug-like molecules. The published absorption values for these molecules were used as response
alculated molecular descriptors as potential explanatory variables. Both methods were compared and their potential use in
tructure–activity relationship (QSAR) context evaluated.
The predictive abilities of the models were studied using different sequences of Monte Carlo cross validation (MCCV). It was s

oth types of models had good predictive abilities and that for the data used, MARS gave better results than TMARS. It could be
hat both methods could be valuable for QSAR modelling.
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. Introduction

High throughput screening has become a very important
ssue in drug discovery. Since most new molecules, poten-
ially useful, fail in a later phase of the drug development
ue to non-proper absorption, distribution, metabolisation,
limination and toxicity (ADME-Tox) properties, screen-

ng methods for these properties are necessary in the first
tages of the drug development. In silico screening can be
ery useful, since it allows screening for ADME-Tox and
ther properties before the molecules are even synthesized.

n silico methods try to build relationships between a dataset
onsisting of known values for the property of interest and
ome calculated theoretical and/or experimental parameters
r descriptors. These kind of relationships are called quan-

itative structure–activity relationships (QSAR). This paper

∗ Corresponding author. Tel.: +32 2 477 47 34; fax: +32 2 477 47 35.
E-mail address: yvanvdh@vub.ac.be (Y. Vander Heyden).

focuses on the relationships between theoretical descr
and the gastro-intestinal absorption of drug molecules.

In the literature different QSAR-models can be found
dicting the absorption of molecules, and built using lin
modelling techniques like multiple linear regression (ML
[1], principal components regression (PCR)[2], partial leas
squares (PLS) regression[2,3], and some more advanced n
linear techniques like artificial neural networks (ANN)[4]
and classification and regression trees (CART)[5]. Two well
known approaches used in screening are the Lipinski
of five [6] and the linear free energy relationship (LFE
approach of Abraham et al.[7]. A disadvantage of these tw
methods is that they give a quite rough classification o
molecules, allowing the elimination of only a very limited
of molecules.

In this paper, it was tried to build models, that giv
more accurate prediction of the absorption values of
molecules. Therefore two techniques, multivariate ada
regression splines (MARS) and two-step MARS (TMAR

731-7085/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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were evaluated. The latter is in fact a combination of MLR
and MARS[8]. The MARS technique was introduced by
Friedman in 1991[9] and successfully used in QSAR by
Nguyen-Cong et al.[10] and Ren et al.[11,12]and in quan-
titative structure retention relationships (QSRR) by Put et
al. [13]. TMARS was introduced and applied successfully in
the prediction of retention in gas chromatography by Xu et
al. [8]. It was proven that the combined method TMARS sig-
nificantly improved the prediction abilities compared to the
individual MLR and MARS models.

In a first step, absorption was modeled using MARS. The
models were evaluated for their predictive abilities using
Monte Carlo cross validation (MCCV)[14]. In a second step,
a TMARS model was build, evaluated and compared to the
MARS-models.

2. Theory

2.1. Multivariate adaptive regression splines (MARS)

MARS is a local modelling technique that divides the
data space into several, possibly overlapping, regions and
fits truncated spline functions in each of these regions. Trun-
cated spline functions consist of two segments, i.e. left-sided
Eq.(1) and right-sided Eq.(2) truncated functions, separated
f
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gives the best description of the response is selected. After
this selection new spline functions are added stepwise in order
to eventually get a complex multivariate model – the global
MARS-model – which almost perfectly describes the train-
ing set. The stepwise addition of spline functions is based
on the improvement of the model. In each step the pair of
splines, which gives the best improvement in the description
of the training set, is added. The global MARS model usu-
ally shows overfitting. In a next step the global MARS-model
is pruned using a sequence of generalised cross-validations
(GCV) alternated with 10-fold cross-validation. During this
procedure, the contribution of each base function to the
descriptive abilities of the model is evaluated based on a
lack-of-fit (LOF) criterion. The base functions contributing
the least to the model are eliminated stepwise. This pruning
process results in a sequence of models with different size.
In the third and final step the optimal model is selected using
a cross-validation technique[9,15].

2.1.1. Building the global MARS-model
In the first step, the MARS-algorithm divides the data

space into two subregions. This is done searching iteratively
each of the descriptive variables as split variable and for each
variable each available data point as knot location. These
selections are done using the GCV-statistic:
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rom each other by a so-called knot location[9].

−
q (x − t) = [−(x − t)]q+ =

{
(t − x)q, if x < t

0, otherwise
(1)

+
q (x − t) = [+(x − t)]q+ =

{
(x − t)q, if x > t

0, otherwise
(2)

here b−
q (x − t) and b+

q (x − t) are the spline function
escribing, respectively, the regions right and left of the

ocationt andq the power to which the spline is raised. T
ubscript “+” indicates that the result of the function i
hen the argument is not satisfied. A spline function is
alled a base function. For each of the explanatory varia
ARS selects the pair of splines and the knot location,
est describe the response variable. In a next step, the dif
ase functions are combined in one multidimensional m
hich describes the response as a function of the explan
ariables. The result is a complex non-linear model of
orm:

ˆ = a0 +
M∑

m=1

amBm(x) (3)

hereŷ is the predicted value for the response variablea0,
he coefficient of the constant base function;M, the numbe
f base functions andBm andam themth base function an

ts coefficient[9,15].
A MARS analysis generally consists of three steps. In

rst step the variable for which the pair of spline functi
t

CV(M) =
(

1

n

) ∑M
m=1(yi − ŷi)2

(1 − C(M)/n)2
(4)

heren is the number of data objects;yi, the response valu
or objectI; ŷi, the predicted response value for objectI; and
(M), a penalty factor defined as

(M) = M + dM (5)

hereM is the number of non-constant base function
he model and d a cost penalty factor for each base func
ptimisation. The GCV-statistic is first used to select the
not location for each of the descriptive variables. Then
ame statistic is used to select the most significant var
and his previously selected knot location) for descrip
f the training set. After selection of the variable the d
pace is divided into two subregions, defined by two sp
one at the left of the knot-location and one at the right).
rocedure is now repeated for each of the subregions an

or the subregions of the subregions, and so on. This iter
rocedure results in a two-by-two stepwise addition of sp
ase functions and is continued until a model is build w
redefined number of terms. This model is called the gl
ARS-model[9,15].
A spline base function can be either a single spline f

ion or an interaction term consisting of the product of tw
ore spline functions. The level of interaction terms allo

s determined by the orderq in MARS. If q equals 1, onl
ingle (linear) spline functions are allowed. Ifq equals 2
r 3, respectively, quadratic and cubic interaction terms
e added. When interaction terms are allowed the algo
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checks, at the end of each iteration, whether the introduction
of an interaction improves the model[9,15].

2.1.2. Pruning
The global MARS-model usually shows overfitting.

Therefore a stepwise pruning procedure is applied, sequen-
tially eliminating the least contributing base function(s).
Usually the pruning process is based on GCV, but other cross-
validation methods, liken-fold cross-validation can be used.
GCV results in the GCV-statistic. In fact this statistic is the
error sum of squares adjusted with a penalty factor for the
complexity of the model. This is done to avoid the selection
of too complex, overfitting models. In this work pruning was
carried out by applying alternately GCV and 10-fold cross-
validation. This alternating pruning process results in a series
of smaller MARS-models[9,15].

2.1.3. Selection of the optimal model
The selection of the optimal model out of the series of

models obtained from the pruning process is also based on
cross-validation. Usually leave-one-out cross validation is
used for this purpose, but in fact every cross validation tech-
nique can be used. The model with the lowest root mean
square error of cross validation (RMSECV) is the most accu-
rate model.[9,15]. The optimal model can be identified as the
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the variable, which shows the highest correlation with the
response. If this variable results in a significant regression
by F-test, the variable is retained and the stepwise procedure
continues. At each step, the variable that gives the highest
decrease in the error sum of squares is added to the model. The
model building stops when none of the remaining variables
causes a significant decrease in the sum of squares[8,17].

A test for lack of fit is carried out on the linear model
[8,17]. If the multiple regression coefficientR is close to one
and theF-ratio is not significant, the linear model can be
considered as final. If not, the model building is continued
applying the TMARS algorithm.

In a first step a forward stepwise procedure is used to deter-
mine whether some variablesxl in the linear model should be
replaced by a pair of spline functions, resulting in a model

ŷ = c0 +
K∑

k=1

ckgk(x) (6)

wherec0 is the constant base function;K, the number of base
functions derived from the linear model;ck, the coefficient
of the functiongk(x), with gk(x) either one of the descriptors
xl or a pair of spline function

⌊±(xl − xjl)
⌋

[8].
In a next step, pairs of spline functions are added to the

model, following the same procedures as described in Section
2.1.1, resulting in a combined model:
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east complex one within one standard error of the most a
ate model. The idea is here to choose the least complex m
ith a predictive error comparable to that of the most accu
ne[16]. In this paper the selection of the most optimal mo
as carried out using Monte Carlo cross validation[14].

.2. Two-step MARS (TMARS)

TMARS is in fact a combination of MLR and MARS. In
rst step a linear model is build, which describes the resp
ariable as a function of the explanatory variables, usi
tepwise linear regression procedure. If the obtained l
odel shows lack of fit, MARS is applied based on the lin
odel. During this procedure some of the descriptors

n the linear model are replaced by a pair of spline functi
n the next step the two-by-two stepwise addition proce
or building the global model is applied, resulting in a glo
MARS model. After obtaining the global model, prun
nd selection of the optimal model is carried out as desc

n Sections2.1.2 and 2.1.3, respectively[8].
The TMARS procedure starts with building a linear mo

hich describes the response variable as a function o
xplanatory variables. A model is obtained

ˆ = a0 +
L∑

l=1

alxl (6)

n which a0 is the intercept;L, the number of selected va
bles andal, the regression coefficient of variablexl. The

orward stepwise algorithm is used to select the best des
ors to be included in the model. This procedure starts
l

ˆ = c0 +
K∑

k=1

ckgk(x) +
M∑

m=1

amBm(x) (7)

hereM is the number of MARS base functions;am, the
oefficient of themth MARS base functionBm(x).

This model, called the global TMARS model, is prun
ccording to the procedure described in Section2.1.2. Both
k(x) andBm(x)-functions can be deleted in the pruning p
ess. The pruning process results in a series of smaller m
rom which the optimal is selected using cross-valida
Section2.1.3) [8,9].

.3. Theoretical molecular descriptors

A theoretical molecular descriptor is the final resul
logical and mathematical procedure, which converts

hemical information from a symbolic representation of
olecule in a useful numerical value[18]. Several thousand
f descriptors are already proposed in the literature an
umber is still growing. Theoretical descriptors can be cla
ed in different ways. The most applied classification is ba
n the molecular representation from which the descript
erived. This results in five classes, zero-, one-, two-, th
nd four-dimensional descriptors derived, respectively,
molecular formula, a substructure list, a topological, a
etrical and a stereoelectronic or lattice representation.

nformation about molecular descriptors and their classi
ion can be found in the work of Todeschini and Conso
18].
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3. Materials and methods

3.1. Data

The data consists of intestinal absorption values for a sub-
set of 140 molecules extracted from a dataset collected by
Zhao et al.[1]. For each of the molecules the name and the
percentage intestinal absorption (%HIA) are listed inTable 1.
These molecules were selected because they show a high
diversity in molecular structure and cover the whole absorp-
tion range (0–100%)[5].

3.2. Three-dimensional structure optimisation

The three-dimensional structures of the molecules were
drawn and optimized using the Hyperchem® 6.03 profes-
sional software (Hypercube, Gainesville, FL, USA). After
the input of the molecule as a topological structure, geometry
optimisation was obtained by the Molecular Mechanics Force
Field method (MM+) using the Polak-Ribière conjugate gra-
dient algorithm with a RMS gradient of 0.1 kcal/(Å mol) as
stop criterion. The optimisation of the structure results in a
data matrix consisting of the Cartesian coordinates of the
atoms, defining the structure. This data matrix can then be
used to calculate molecular descriptors[5].
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Table 1
The absorption data for the 140 molecules, extracted from Zhao et al.[1,5]

No. Substance %HIA

1 Acarbose 1.5
2 Acebutolol 89.75
3 Acetaminophen 85
4 Acetylsalicylic acid 100
5 Acrivastine 88
6 Acyclovir 25
7 Adefovir 12
8 Alprenolol 93.75
9 Aminopyrine 100

10 Amoxicillin 93.75
11 Amphotericin B 5
12 Amrinone 93
13 Antipyrine 100
14 Atenolol 51
15 Atropine 90
16 Azithromycin 36
17 Aztreonam 1
20 Benazepril 37
19 Benzylpenicillin 27.5
20 Betaxolol 90
21 Bornaprine 100
22 Bretyliumtosylate 23
23 Bromazepam 84
24 Bromocriptine 28
25 Bumetanide 100
26 Bupropion 87
27 Caffeine 100
28 Camazepam 99
29 Captopril 68
30 Cefatrezine 76
31 Ceftriaxone 1
32 Cefuroxime 5
33 Cefuroximeaxetil 36
34 Cephalexin 98.5
35 Chloramphenicol 90
36 Chlorothiazide 23.75
37 Cimetidine 82.5
38 Ciprofloxacin 84.5
39 Cisapride 100
40 Clonidine 96.25
41 Codein 95
42 Corticosterone 100
43 Cromolynsodium 0.5
44 Cymarin 47
45 Cyproterone acetate 100
46 Dexamethasone 98
47 Diazepam 99.25
48 Doxorubicin 5
49 Enalapril 66
50 Enalaprilat 17.5
51 Erythromycin 35
52 Ethambutol 77.5
53 Ethinylestradiol 100
54 Etoposide 50
55 Felbamate 92.5
56 Fenoterol 60
57 Fluconazole 96.25
58 Foscarnet 17
59 Fosinopril 36
60 Fosmidomycin 30
61 Furosemide 61
62 Gabapentin 50
63 Ganciclovir 3.6
.3. Calculating molecular descriptors

Molecular descriptors were calculated using the Drag®

.0 professional software[19]. This program allows to ca
ulate 48 constitutional descriptors, 119 topological des
ors, 47 walk and path counts, 33 connectivity indices
nformation indices, 96 2D autocorrelations, 107 edge a
ency indices, 64 BCUT-descriptors, 21 topological ch
ndices, 44 eigenvalue-based indices, 41 randic mo
ar profiles, 74 geometrical descriptors, 150 RDF des
ors, 160 3D-MoRSE descriptors, 99 WHIM descript
97 GETAWAY descriptors, 121 functional group cou
20 atom-centered fragments, 14 charge descriptors
8 molecular properties. More information about the ab
escriptors can be found in the work of Todeschini and C
onni [18]. The software automatically eliminates cons
ariables in a given dataset. For descriptors with a cor
ion higher than 0.98, parameters are set such that onl
s retained in the dataset. Next to the Dragon® descriptors
yperchem® was used to calculate some additional par
ters, i.e. solvent accessible surface area, molecular vo
ctanol/water partition coefficient (logP), hydration energy
olar refractivity, molar polarisability and molar mass[5].

.4. Building MARS and TMARS models

The models were build using in-house algorithms wri
n Matlab 6.5 (The Mathworks, Matick, MA). Programmi
as done according to the original MARS algorithm p
osed by Friedman[5]. The absorption values were used
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Table 1 (Continued )

No. Substance %HIA

64 Guanabenz 75
65 Guanoxan 50
66 Hydrochlorothiazide 72.75
67 Hydrocortisone 90.25
68 Imipramine 96.25
69 Indomethacin 100
70 Iothalamatesodium 1.9
71 Isoxicam 100
72 Isradipine 92.5
73 Labetalol 93.75
74 Lactulose 0.6
75 Lamotrigine 70
76 Levodopa 85
77 Lincomycin 27.5
78 Lisinopril 25
79 Loracarbef 100
80 Lormetazepam 100
81 Lovastatin 30.5
82 Mannitol 20
83 Meloxicam 90
84 Metaproterenol 44
85 Methotrexate 80
86 Methyldopa 41
87 Methylprednisolone 82
88 Metolazone 63
89 Metoprolol 95
90 Morphine 100
91 Nadolol 31
92 Nefazodone 100
93 Naloxone 91
94 Nordiazepam 99
95 Norfloxacin 35
96 Olsalazine 2.3
97 Ouabain 1.4
98 Oxatomide 100
99 Oxazepam 98.5

100 Oxprenolol 91.75
101 Phenoxymethylpenicillin 45
102 Phenytoin 90
103 Pindolol 91.75
104 piroxicam 100
105 Practolol 98.75
106 Pravastatin 34
107 Prazosin 100
108 Prednisolone 98.9
109 progesterone 93.25
110 Propranolol 92.5
111 Propiverine 84
112 Propylthiouracil 75
113 Quinidine 80.25
114 Raffinose 0.3
115 Ranitidine 52.75
116 Reproterol 60
117 Saccharin 88
118 Salicylic acid 100
119 Scopolamine 92.5
120 Sorivudine 82
121 Sotalol 96.25
122 Spironolactone 73
123 Sudoxicam 100
124 Sulfasalazine 38.75
125 Sulindac 90
126 Sulpiride 36
127 Sumatriptin 70

Table 1 (Continued )

No. Substance %HIA

128 Terazosin 93.25
129 Terbutaline 66.5
130 Testosterone 100
131 Theophylline 96
132 Timolol maleate 85.5
133 Tranexamicacid 55
134 Trimethoprim 97
135 Trovoflaxicin 88
136 Venlafaxine 92
137 Verapamil 95
138 Warfarin 98.5
139 Ximoprofen 100
140 Zidovudine 100

response variables and the descriptors as explanatory vari-
ables.

4. Results and discussion

4.1. Building MARS-models

The model was build using the Briggsian logarithms of
the percentages human intestinal absorption (%HIA) of all
140 molecules as response variable. The descriptors were
used as descriptive variables. The global MARS-model is
build and pruned. The orderq of the MARS-model is set on
2, which means that both linear and second order splines
can be used during model building. The maximum num-
ber of termsMmax, the stop criterion in building the global
MARS-model, was set to 100. Pruning was carried out using
alternately 10-fold and general cross validation. A sequence
of smaller MARS models was obtained. Selection of the opti-
mal model was performed using Monte Carlo cross validation
[14]. In MCCV, a given fraction of the dataset is used as
test set. The process starts with a random selection of the
test set, the remaining objects are used as training set. The
obtained model is used to predict the test set and the error
is calculated. In our work this process is repeated one hun-
d t set.
T CCV
w ct as
t ation.
T 0, 25,
3 each
s
t ction
o one
s r all
1 e
m CV.
B base
f base
f
m -
red times, each time with a new randomly selected tes
he mean error is calculated. Eleven sequences of M
ere carried out. The first sequence used only one obje

est set and corresponds to a leave one out cross-valid
he other sequences used, respectively, 5, 10, 15, 2
0, 35, 40, 45 and 50% of the dataset as test set. For
ize of test sets 100 repetitions are carried out.Fig. 1shows
he root mean square error of cross validation as a fun
f the complexity of the models. Each line stands for
equence. The model showing a minimal RMSECV fo
1 sequences is selected as the optimal.Fig. 2shows that th
odel with 31 base functions shows the minimal RMSE
ased on the one standard error rule the model with 29

unctions was selected as the optimal. The different
unctions and their coefficients are given inTable 2. The
odel consist of one constant functionB1 and 28 single lin
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Fig. 1. RMSECV as a function of the MARS model size. Different lines
represent different testset sizes.

ear spline functions. No second order splines were selected
(Fig. 2).

Out of the 761 descriptors used to build the MARS-
model, 20 different descriptors were selected. Fourteen of
the selected base functions can be considered as seven pairs
of spline functions:B2 andB3, B5 andB6, B7 andB8, B9 and
B10, B11 and B12, B20 and B21 and B24 and B25. Take the
example of pairB2 andB3:

(188− T (O · ·O))+ =
{

188− T (O · ·O), if T (O · ·O) > 188

0, otherwise
(8)

(T (O · ·O) − 188)+ =
{

T (O · ·O) − 188, if T (O · ·O) < 188

0, otherwise
(9)

This means that whenT(O · · · O) is higher than 188, the
second term (Table 2) in Eq. (3) equals 0.0021(188− T(O ·
·O)) and the third term is zero. WhenT(O · ·O) is smaller than
188, the second term is zero and the third equals 0.0024(T(O ·
·O)− 188). The remaining terms are not paired. As example,

F S
m

consider function B4:

(2.1490− H4p)+ =
{

2.1490− H4p, if H4p > 2.1490

0, otherwise
(10)

what means that the fourth term in Eq.(3) equals
−0.3825(2.1490− H4p), when H4p is higher than 2.1490
and zero when it is smaller than 2.1490.

The summation of the 29 base functions gives a response
surface in multidimensional space consisting of small planes
describing local regions of the dataspace.

4.2. The selected descriptors

Like previously mentioned 20 descriptors were selected
in the model.Table 3shows the different selected descrip-
tors, their definition and their class. More information can
be found in the work of Todeschini and Consonni[18].
Since these descriptors are calculated theoretical values, it is
not evident to relate them physicochemically to the process
of drug absorption. One exception is the selection ofn-
octanol/water partition coefficient (logP)-based descriptors
(BLTF96 and ALOGP2). logP is one of the key properties of
a molecule, often used to estimate whether that molecule can
pass a biological membrane or not[6,20,21]. Two descriptors,
T en

T
T

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B26 +

B27 (0.2660− E1m)+ 3.7735
B28 (1− nCt)+ −0.1747
B29 (0.0930− Mor18m)+ −0.9773
ig. 2. Magnified section fromFig. 1, RMSECV as a function of the MAR
odel size. Different lines represent different testset sizes.
(O · · · O) andnHDon are related to respectively the oxyg

able 2
he different base functions (Bm) of the model and their coefficients (am)

m Definition am

1 1 1.9917

2 (188-T(O · ·O))+ 0.0021

3 (T(O · ·O)− 188)+ 0.0024

4 (2.1490− H4p)+ −0.3825

5 (−1.29− BLTF96)+ 0.0722

6 (BLTF96 + 1.29)+ −0.1450

7 (−0.6980− Mor14v)+ −2.6274

8 (Mor14v + 0.6980)+ −0.2297

9 (8− nHDon)+ −0.0470

10 (nHDon− 8)+ −0.4967

11 (35.602− RDF075m)+ 0.0292

12 (RDF075m − 35.602)+ 0.0653

13 (−0.3450− Mor18m)+ 1.2407

14 (GATS4m − 0.9600)+ 0.8989

15 (0.0650-HATS4p)+ −1184274

16 (MAXDN − 5.6270)+ −33.0517

17 (R1e− 2.2010)+ −3.1528

18 (0.1530− Mor17m)+ −0.4062

19 (Mor19v + 0.2210)+ 0.3513

20 (0.1690− Mor22m)+ 0.3389

21 (Mor22m − 0.1690)+ −1.0480

22 (R3u− 1.6460)+ −0.4457

23 (ALOGP2-0.2880)+ −0.0123

24 (0.7290− GATS1e)+ −0.6363

25 (GATS1e− 0.7290)+ −0.7825
(1.4250− AAC) 1.6485
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Table 3
Selected descriptors in the MARS-model[18]

Descriptor Definition Descriptor class

T(O · ·O) Sum of topological distances between oxygen atoms Topological descriptors
H4p H autocorrelation of lag 4/weighted by atomic polarizabilities GETAWAY descriptors
BLTF96 Verhaar model of Fish base-line toxicity from MLOGP (mmol/l) Molecular properties
Mor14v 3D-MoRSE-signal 14/weighted by atomic van der Waals volumes 3D-MoRSE descriptors
nHDon Number of donor atoms for H-bonds (with N and O) Functional group counts
RDF075m Radial distribution function-7.5/weighted by atomic masses RDF descriptors
Mor18m 3D-MoRSE signal 18/weighted by atomic masses 3D-MoRSE descriptors
GATS4m Geary autocorrelation-lag 4/weighted by atomic masses 2D autocorrelations
HATS4p Leverage-weighted autocorrelation of lag 4/weighted by atomic polarizabilities GETAWAY descriptors
MAXDN Maximal electrotopological negative variation Topological descriptors
R1e R-autocorrelation of lag1/weighted by atomic Sanderson electronegativities GETAWAY descriptors
Mor17m 3D-MoRSE signal 17/weighted by atomic masses 3D-MoRSE descriptors
Mor19v 3D-MoRSE-signal 19/weighted by atomic van der Waals volumes 3D-MoRSE descriptors
Mor22m 3D-MoRSE signal 228/weighted by atomic masses 3D-MoRSE descriptors
R3u R autocorrelation of lag 3/unweighted GETAWAY descriptors
ALOGP2 Squared Ghose-Crippen octanol–water partition coefficient (logP2) Molecular properties
GATS1e Geary autocorrelation-lag 1/weighted by atomic Sanderson electronegativities 2D autocorrelations
AAC Mean information index on atomic composition Information indices
E1m 1st component accessibility directional WHIM index/weighted by atomic masses WHIM descriptors
nCt Number of total tertiary C(sp3) Functional group counts

atoms and the donor atoms for H-bonding in the molecule.
These descriptors describe properties related to the calcula-
tion of the polar surface area (PSA). The PSA is a measure
for the H-bonding capacity of a molecule and it has been
found that processes involving passive diffusion depend pri-
marily on these H-bonding properties[22]. The other selected
descriptors can be related to the two-dimensional (GATS4m,
MAXDN, GATS1e, AAC and nCt) or three-dimensional
(H4p, Mor14v, RDF075m, Mor18m, HATS4p, R1e, Mor17m,
Mor19v, Mor22m, R3u and E1m) structure of the molecule
[18].

4.3. Predictive power

To evaluate the predictive properties of the model obtained
in Section4.1 each molecule was predicted twice. Once as
part of the training set and once as part of the different test
sets used in the different sequences of the Monte Carlo cross
validation. The model describes the training set quite well
since the root mean squared error for the training set is 0.1183
or 7.0% and theR value is 0.9330. The mean value for the
Root Mean Squared Error of Cross Validation (RMSECV)
obtained for the different sequences of the Monte Carlo cross
validation is 0.2594. This value can be seen as a mean error
of 15.4% of the real absorption value (%HIA).Fig. 3shows
t ajor
p f the
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m s that
t end
i d on
t the
a

4.4. Building the TMARS-model

The model was build using the Briggsian logarithms of
the %HIA-values for the 140 molecules as response variable.
The descriptors were used as descriptive variables. First the
linear model was build and evaluated with a lack-of-fit test
as described in Section2.2. Since this test was significant
MARS was applied. The global TMARS-model was build
and pruned. The orderq of the TMARS-model was set on 2
and the maximum number of termsMmax 100. Pruning was
carried out using alternately 10-fold and general cross valida-
tion. A sequence of smaller TMARS models was obtained.
The selection of the optimal model was carried out using
Monte Carlo cross validation like before.
he residual plot for the selected MARS-model. In the m
art of the absorption range an acceptable distribution o
esiduals is obtained. In the highest part of the range, w
ost objects are situated, a trend is seen. This indicate

he model is not ideal. Since the range over which this tr
s shown is small, one can conclude that predictions base
he MARS-model give a quite accurate indication about
bsorption values of the predicted molecules.
 Fig. 3. Residual plot for MARS.
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Table 4
Selected descriptors in the MLR-model[18]

Descriptor Definition Descriptor class

nO Number of oxygen atoms Constitutional descriptors
TIE E-state topological parameter Topological descriptors
D/Dr05 Distance/detour ring index of order 5 Topological descriptors
T(S · ·S) Sum of topological distances between sulfur atoms Topological descriptors
IC2 Information content index (neighborhood symmetry of 2-order) Information indices
Mor08m 3D-MoRSE-signal 08/weighted by atomic masses 3D-MoRSE descriptors
Mor16v 3D-MoRSE-signal 16/weighted by atomic van der Waals volumes 3D-MoRSE descriptors
HATS8v Leverage-weighted autocorrelation of lag 8/weighted by atomic van der waals volumes GETAWAY descriptors
nN = N Number of N azo (aliphatic) Functional group counts
nN(CO)2 Number of imides Functional group counts
nOH Number of total hydroxyl groups Functional group counts
C-030 X-CH-X Atom-centred fragments

The obtained linear model consists of 13 terms, with one
constant function and 12 functions based on different descrip-
tors. The linear model is given by following equation:

ŷ = 1.2576− 0.1008(nO) − 0.0006(TIE)

− 0.0018(D/Dr05) − 0.0497(T (S · ·S))

+ 0.1760(IC2)− 0.1239(Mor08m) + 0.2937(Mor16v)

+ 0.2496(HATS8v)− 0.5254(nN = N)

+ 0.5056(nN(CO)2) − 0.0814 (nOH)

− 0.3987(C-030) (11)

The multiple correlation coefficientR equals 0.701, the stan-
dard errorS 0.305 and theF-ratio for overall regression fit
F 24.782.Table 4shows the selected descriptors, their defi-
nition and class.Fig. 4shows the residual plot for the linear
model. Based on theR and theF values it can be concluded
that the predicted and observed log(%HIA) are not highly
linearly correlated. The residual plot shows that there is no
random distribution of the residuals, which can imply that
the model shows underfitting. The root mean square error of

cross validation for this model is 27.01, evaluated with leave-
one-out cross-validation, which confirms that the model is not
suited for prediction. Due to these findings the second step,
MARS, was applied. After obtaining the global TMARS-
model, it was pruned using alternately 10-fold and general
cross-validation. Out of the series of models the optimal was
selected using Monte Carlo cross validation (seeFig. 5). The
graph shows that the minimum for all sequences is found
at model size 9. The optimal model consists of nine terms
in which seven linear terms and two spline functions (pair
of splines) are integrated. The final model can be written as
follows:

ŷ = 1.8814− 0.0886(nO) − 0.0499(T (S · ·S))

− 0.1256(Mor08m) + 0.4351(Mor16v)

+ 0.1207(HATS8v)− 0.3988(C-030)

− 0.0010(337.554− TIE)+
− 0.0133((TIE− 337.554)(2.14− R1e))+ (12)

This model shows anR value of 0.7200 and a RMSECV of
0.2927 evaluated with leave-one-out cross validation. Both

F nes
r
Fig. 4. Residual plot for the MLR model.
ig. 5. RMSECV as a function of the TMARS model size. Different li
epresent different testset sizes.
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Table 5
Selected descriptors in the TMARS-model[18]

Descriptor Definition Descriptor class

nO Number of oxygen atoms Constitutional descriptors
T(S · ·S) Sum of topological distances between sulfur atoms Topological descriptors
Mor08m 3D-MoRSE-signal 08/weighted by atomic masses 3D-MoRSE descriptors
Mor16v 3D-MoRSE-signal 16/weighted by atomic van der Waals volumes 3D-MoRSE descriptors
HATS8v Leverage-weighted autocorrelation of lag 8/weighted by atomic van der waals volumes GETAWAY descriptors
C-030 X-CH-X Atom-centred fragments
TIE E-state topological parameter Topological descriptors
R1e R-autocorrelation of lag1/weighted by atomic Sanderson electronegativities GETAWAY descriptors

values show that TMARS resulted in an improvement of the
linear model.

4.5. The selected descriptors

Eight descriptors were selected in the final TMARS-
model.Table 5shows the different selected descriptors, their
definition and their class. More information about these
descriptors can be found in the work of Todeschini and Con-
sonni[18]. All descriptors used are theoretical and can not
easily be related to the process of membrane passage. In the
selection two descriptors are found corresponding to oxy-
gen and sulphur atoms (nO andT(S · ·S)). The properties
described by these descriptors can again be related to the
polar surface area (PSA)[22]. Most of the other descrip-
tors can be related to the two-dimensional (TIE) or three-
dimensional (Mor08m, Mor16v, HATS8v and R1e) structure
of the molecule. The descriptor C-030 is based on a code
describing each carbon atom through its atom type, bonding
types and neighbouring atom types in the molecule[18].

4.6. Predictive power of the TMARS-model

The predictive abilities of the model were evaluated simi-
larly as the MARS-model in Section4.3. As for the MARS-
m rt of
t ts of
t el is
a red
e ean
v oss
v ror of
2 with
t the
M ted
T
T ined
t S-
m rger
t uals
w clu-
s less
r

Fig. 6. Residual plot for TMARS.

5. Conclusions

Comparison of the MARS and the TMARS model shows
that the MARS-model describes the dataset better and has
a better predictive ability. The lower performance of the
TMARS method can be explained by the fact that the TMARS
model is based on a linear model. The obtained TMARS
model shows high similarity with the linear model. Seven
of the selected descriptors (nO, T(S · ·S), Mor08m, Mor16v,
HATS8v, C-030 and TIE) correspond to descriptors from the
linear model. Only one descriptor (R1e) corresponds to a
descriptor selected in the MARS model. This leads to the
conclusion that for our data the linear component in TMARS
is too strongly represented, resulting in worse models and pre-
dictions than those based on the complete non-linear MARS
technique.

From the results in this paper it can be concluded that
for this dataset, MARS performs better than TMARS and
that MARS can be a valuable tool in modelling the gastro-
intestinal absorption of molecules.

It could also be shown that TMARS can dramatically
improve an MLR model for gastro-intestinal absorption.
Therefore it can also be supposed that TMARS is valuable in
modelling gastro-intestinal absorption, if a dataset is avail-
odel each molecule was predicted twice. Once as pa
he training set and once as part of the different test se
he MCCV. The description of the training set by the mod
cceptable with anR value of 0.7200 and a root mean squa
rror for the training set of 0.2772 or 16.44%. The m
alue for the RMSECV evaluated with Monte Carlo cr
alidation is 0.3377 and can be considered as a mean er
0.03% of the real absorption value. The errors obtained

he TMARS-model are larger than those obtained with
ARS-model.Fig. 6shows the residual plot for the selec
MARS-model. Comparison ofFigs. 6 and 3shows that with
MARS a less good distribution of the residuals is obta

han for MARS. An analogue trend is found as for the MAR
odel, but the range over which this trend is observed is la

han for MARS. Further, it can be observed that the resid
ith TMARS are considerably larger. This led to the con
ion that predictions based on the TMARS-model, are
eliable than those based on the MARS-model.
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able with a higher linear correlation between the %HIA and
the descriptors, resulting in a better MLR-model.

As final conclusion it can be stated that both techniques
can be valuable and deserve more attention in the field of
QSAR.
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